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A coherent and stable baroclinic eddy in a rotating fluid was produced on a sloping 
bottom by releasing a dome of salt water into the ambient fresh water. A strong 
cyclonic vortex is produced above the heavy dome. The entire eddy system moves 
‘north-westward’ (with the up-slope direction designated ‘north ’) as a ‘Taylor 
column’. The eddy system displays long lifetimes, but it is shown that a theory of 
isolated systems cannot account for the experimental observations. Instead, it is 
demonstrated that the vortex flow above the lens is along the lines of constant depth, 
producing a net pressure force on the lens, which approximately balances the 
buoyancy force. When Ekman friction is also included, it accounts for the northward 
motion of the dome. 

1. Introduction 
Evidence that coherent eddies are present and play a key role in the dynamics of 

the ocean has accumulated, largely from near-surface observations of warm and cold 
rings in the vicinity of the Gulf Stream (Ring Group 1981). Bottom eddies have also 
been identified as patches of cold water moving along the coastal slope in the 
Mid-Atlantic Bight (Houghton et al. 1982). Such eddies may result from baroclinic 
instability of bottom gravity currents (Smith 1976; Griffiths, Killworth & Stern 1982) 
and they may transport the bulk of the cold bottom water emerging from the 
Denmark Strait overflow. The evolution and translation of the eddies would then be 
an important factor in the mixing of the dense water and in determining the 
time-average structure of the bottom current. 

Coherent eddies have weak interactions with the surrounding ocean, and they have 
been idealized in theoretical models that investigate isolated systems with no 
momentum transfer to the surrounding fluid. The first model of an isolated and 
strongly nonlinear geophysical eddy was the modon (Stern 1 9 7 5 ~ ;  Flierl 1979u), 
which consisted of a cyclone-anticyclone vortex pair. Models for warm- and cold-core 
rings with circulation in one sense only were later introduced (Flierl 19793). Models 
of cold eddies on a sloping bottom or a B-plane were given by Nof (1983), Killworth 
(1983) and Flierl (1984). 

Additional insights into such strongly nonlinear systems may be obtained by 
laboratory experiments. Flierl, Stern & Whitehead ( 1983) generated barotropic 
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dipoles and there have been several experiments in which such eddies emerge as a 
result of baroclinic instability. In  the present work we investigate the baroclinic eddy 
produced by releasing a finite volume of dense fluid on a sloping bottom beneath an 
upper layer of finite depth. The study was suggested by an unpublished experiment 
carried out previously by one of the authors (R.W.G.), in which a gravity current 
is introduced on a parabolic slope in a rotating tank. The current adjusts by moving 
down-slope until it reaches a depth at which it begins to flow approximately along 
contours of constant depth. The current was observed to break into a number of 
coherent baroclinic eddies, involving most of the dense fluid in the resulting bottom 
current. A surprising feature of these eddies was the presence of an intense cyclonic 
vortex above each dome of dense water. We have tried to isolate this effect in a much 
simpler experiment, and to develop a theoretical understanding of it. We show that 
most of the kinetic energy is in the deep light fluid above the dome, and this 
distinguishes our work from the models of Nof (1983) and Killworth (1983), who 
considered the case of cold domes on a sloping bottom beneath an infinitely deep and 
motionless upper layer. 

2. Formulation 
Consider the two-layer model shown in figure 1.  The lower layer consists of a lens 

of finite volume with density p+ Ap resting on a bottom with linear slope 8, and lying 
beneath a lighter fluid of density p. The reference frame (0, X ,  Y, 2) is stationary with 
respect to the rotating tank, whereas the frame (A, z, y, z) translates with the lens, 
and has its origin A at the centre of the eddy. The top surface is limited by a rigid 
lid, and H ( A )  designates the total depth of the layer at A. The depths of the upper 
and lower layers are h, and h, respectively (subscripts 1 and 2 generally refer to the 
upper and lower layers, respectively), and are related by 

h,(z ,y)  = H(A)-sy-hh,(z,y). (2.1) 

We restrict ourselves to steadily east-west propagating domes in which the velocity 
of the dome centre relative to the tank is denoted by C,. North-south displacements 
of the lens would preclude a steady so1ution.t The system considered here is very like 
the one studied by Nof (1983), except that the upper layer was infinitely deep and 
motionless in Nof’s model. When motion in the upper layer is taken into account, 
the pressure p , ( z , y , z , t )  in the lens is related by the hydrostatic equation to the 
pressure anomaly in the upper layer p l (x ,  y, t )  (relative to ( o o , ~ ,  z, t ) ) ,  i.e. 

P ,  = P l +  APdh, + SY - 2). (2.2) 

The momentum equations for the lens in the coordinate system moving with the lens 
are 

1 1 

P P P 
u2 a, u2 + v2 a, u2 -fv2 = --azp, = --azp, - @ g  a, h,, 

1 1 AP AP 
u2 a, v2 + we a, v 2  +juz +jc, = -- av p ,  = -- av P ,  ---Q a, h, ---Qg. 

P P P P 

t In $4 the momentum equations will be expanded in the small parameter /3 (B = 8L/H, H and 
L being the vertical and horizontal lengthscales) in the manner previously carried out by Killworth 
(1983) and Flied (1984). The results of the present section will hold, provided that the flow is 
independent of time at the first and second orders of the B-expansion. 



Coherent baroclinic eddies on a sloping bottom 47 

FIQURE 1. A sketch of a lens of dense fluid on a sloping bottom. The coordinate system moving 
with the lens is (A ,  x, y, z). The reference frame is (0, X ,  Y, 2). 

On integration of the momentum equations over the entire lens we recover the 
equations obtained by Nof (1983) with an additional pressure force applied on the 
lens by the vortex above it. Thus 

where 9 denotes the area in the plane (2, y) covered by the dome. The translation speed 
of the dome then depends on the motion in the upper layer. In  Nof’s (1983) theory 
the overlying deep fluid was assumed to be at  rest, and the translation speed (denoted 
Ci) is therefore 

- A ~ S S  
C, = -. 

Pf 
The case of isolated eddies is of special interest for oceanic applications because 

they do not radiate energy by Rossby waves. This may explain the persistence of 
some eddies in the ocean, and some features of the eddy system produced in our 
experiment (long lifetime, coherency m d  strong vorticity above the lens). If the eddy 
system in figure 1 is isolated, and if p,(x,  y, t )  denotes the pressure anomaly (relative 
to x = 00) on the upper surface, then the integrated momentum equations imply 
(Mory 1985): 

J[:31+Amh2)hdY = 0. (2.8) 

Thus the average pressure above the heavy dome is negative and proportional to the 
volume of the dome. An important consequence of (2.8) is the prediction of strong 
cyclonic motions above the lens, an effect that is observed in the previously cited 
(R. W. G.) experiment aa well aa in the experiment presented below. Nof (1985) recently 
claimed that the lateral scale of the motions above the lens depends on the external 
radius of deformation. We disagree with this statement because the rigid-lid 
approximation is irrelevant to the existence of isolated eddies so that the external 
radius of deformation is irrelevant and the lateral scales of the motions above and 
in the lens are the same. However, we should expect some motion to occur on the 
scale of the external radius of deformation, especially when an eddy is produced, but 
they are observed to be weak and unimportant in the experiments presented in this 
paper. Equation (2.8) does not require the eddy to be steadily propagating, nor does 
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it  restrict the depth of the upper-layer fluid. However, the integral constraint (2.8) 
has very strong implications in terms of the kinematics of the flow. It requires two 
assumptions concerning the decay of the solution far away from the eddy. The 
pressure p ,  and the velocity v, have to decrease faster than l/r2 as r+ 00 (Mory 1983). 
It is shown in $4 that the eddy produced in the experiment is not isolated because 
it does not satisfy the integral theorem (2.8). 

Another indication that the eddy produced in the experiment is not isolated will 
follow from (2.7). The velocity C, is also the translation speed of isolated eddies even 
in the presence of strongly nonlinear motion above the lens. If the magnitude of the 
motion within the lens is sufficiently small, the geostrophic balance holds within the 
lens (note that the front at the edge of the lens precludes the use of quasi-geostrophic 
theory in the lens) : 

- P f V z  = -3, P271 

u2 and v, being the velocities in the moving coordinate system. Since the edge of the 
lens is a streamline in the moving coordinate system, we get 

p ,  + pC, f y  = const (2.10) 

along that line. The comparison of the latter relationship with the hydrostatic 
equation (2.2) shows that the pressure p ,  in the upper layer depends on y at the edge 
of the lens if the translation speed departs from Ci (2.7), implying that Rossby waves 
are generated outside the eddy. 

3. The laboratory model 
3.1. The experiment 

The experimental set-up is shown in figure 2. Experiments were conducted in a square 
tank (108 cm wide) mounted on a rotating table. The table was rotated at a constant 
rate SZ = between 0.8 and 1.25 rad s-l. A plate was placed on the bottom of the 
tank at  an angle of a x 8" with the horizontal plane. The bottom slope was then 
s x 0.14. The tank was filled with fresh water and a dense lens was produced by 
suddenly releasing a finite amount of salt water on the bottom in the manner 
previously used by Saunders (1973) and Griffiths BE Linden (1981). Before starting 
the experiment the dense fluid was held in an upright cylinder (diameter R,) on the 
bottom and occupied a depth So H (H being the total depth of the water at the centre 
of the cylinder). Small holes through the cylinder slightly below the free surface 
permitted an equalization of surface height inside and outside the cylinder as the salt 
water was added. The relative density difference Ap/p  between the fresh and the 
saline fluids ranged from 0.45 % to 0.65 % . Experiments were started by pulling up 
the cylinder. Under the action of buoyancy forces the heavy fluid then began to 
spread out on the bottom, producing compression of fluid columns in the lens and 
stretching in the fluid above the lens. Within a few rotation periods the motion 
evolved towards a balanced cyclonic circular vortex. Observations show that the 
dense fluid spreads through approximately one deformation radius Rd = (g'H)i/f ,  in 
agreement with previous measurements by Saunders (1973). The typical diameter 2L 
of the lens is 

2L X 2(R0 +Rd). (3.1) 
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FIGURE 2. Schematic diagram of the experimental set-up. 

All direct measurements were made from photographs taken by a camera fixed 
above the tank and rotating with the table, and successive exposures revealed the 
displacement of the dyed lens of heavy fluid. In addition to the plan view, the side 
view of the lens was recorded on each photograph through an inclined mirror placed 
alongside the tank. In some experiments fluoresceine dye was mixed with the upper 
layer fluid in the cylinder before starting the experiment, and this revealed the 
subsequent motion of the upper layer. The displacements of small paper pellets lying 
on the free surface, as revealed by exposures of 6 s duration, were also used to estimate 
the instantaneous velocity field in the upper layer. Comparisons of the velocity field 
at  successive times for a single experiment gave the rate of decay of the vorticity 
in the eddy. 

3.2. Eddy stability 
Under some initial conditions an eddy becomes unstable with the vortex breaking 
down into several baroclinic eddies in the manner reported by Saunders (1973) and 
Griffiths t Linden (1981); we wanted to avoid such conditions. Saunders created 
baroclinic eddies on a horizontal bottom by filling a cylinder to a depth H with salt 
solution, and then removing the cylinder. The heavy fluid then spreadunder the fresh 
water having the same depth H. The resulting circular eddy was stable if the 
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parameter 4 = g‘H/f 2Ri exceeded a critical value of F, = 1.8. In similar experiments, 
Griffiths & Linden (1981) released fluid that was less dense than the surrounding fluid 
and which spread out under the free surface. The ratio So of the initial depth H ,  of 
buoyant fluid in the cylinder to the total water depth H was also varied. In  this case, 
all eddies were unstable, the difference with Saunders’ results being attributed to 
different effects of friction at  the rigid bottom and the free surface. 

For the present experiments with a sloping bottom a depth ratio So = H , / H  in the 
range 0.2-0.5 was chosen. We verified that stable eddies are found when 
Po = g’HSo/f2Rt > 2. All of the following experiments were conducted under stable 
conditions. For example, experiments with So x 0.3 and So x 0.5 had initial Froude 
numbers 6 x 2.5 and F, x 5 respectively. 

3.3. Qualitative observations 
Photographs of the flow pattern at successive times during a single experiment are 
shown in figure 3 (plates 1 and 2). The time elapsed after removing the cylinder is 
non-dimensionalized by the period of rotation of the tank (T = 47c/f). In  this 
experiment, the fresh water above the lens is coloured with green-yellow fluoresceine 
dye, and the dense water beneath is shown using blue dye. The initial position of the 
centre of the cylinder is marked in figure 3 (b-e) by a star, from which the displacement 
of the eddy can be seen. Within a single rotation period following removal of the 
cylinder, the formation of a single coherent vortex is clear. Weak shear instabilities 
occur at the edge of the vortex during the initial evolution towards geostrophic 
equilibrium. However, the motions induced by these small-scale instabilities dissipate 
within two or three rotation periods. A more important initial effect is the force of 
gravity which pushes the lens downhill, and which contributes to the generation of 
the strong cyclonic vorticity above the lens. But an uphill ‘northward’ motion 
commences within about one rotation period, and this is accompanied by an outwards 
mass flux from the Ekman layer. 

Apart from the observation that a single stable baroclinic eddy can be produced 
on a sloping bottom, the most significant feature of the time evolution of the system 
is the monotonic ‘westward’ and ‘northward’ (uphill) drift of the lens after the short 
initial adjustment period (figure 3b-e). The translation speed of the lens is found to 
be very small compared with the translation speed of isolated eddies in a deep ocean, 
(2.7), approximately 1 mm s-l compared with about 1 cm s-l, and the ‘northward’ 
speed is of the same order of magnitude as the ‘westward’ speed. The side views in 
figure 3 show that the displacement of the fluoresceine-marked water volume in the 
upper layer is identical with the displacement of the dense lens (above the Ekman 
layer), indicating that most of the water that was initially at  rest above the dense 
fluid is trapped in a Taylor column above the lens. In  our notation the necessary 
condition for the occurrence of Taylor columns above a rigid topography (Ingersoll 
1969; Hogg 1973; Huppert 1975; McCartney 1975): 

is obviously satisfied in our experiment (Cx x 1 mm s-l, L x 10 cm, f x  1 s-l, 
So = O(1)). A mass flux out of the Taylor column is also visible on figure 3 (b-e), where 
the fluoresceine dye marks a tail that extends behind the eddy. This tail may indicate 
a weak topographic Rossby wave behind the eddy - another indication that our eddy 
is not isolated. Another view (figure 4) clearly indicates the coherency of the eddy 
above the Ekman layer. 
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FIGURE 3 (a-c). For caption see Plate 2. 
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FIGURE 3. Photographs showing the time evolution of an eddy structure at times (a) 1.2T @) 7.1T 
(c) 14.2T, (d) 23.77 and (e) 33.1T, with 7 being the period of rotation of the tank. Initial position of the 
cylinder is indicated by the star. Plan and side views are given for each exposure. The dense fluid is made 
visible by blue dye which spreads out along the bottom in an Ehari  layer. The fresh water initially on 
top of the lens is shown by green-yellow fluoresceine. Experimental conditions are: bottom slope sz0.14, 
fZl.01 s-’, g ’ Z 6 . 5  cm s-*, d,z0.5, F,,h4.1. Direction of rotation is anticlockwise. In the plan view 
leftwards corresponds to ‘westward’. 

MORY, STERN & GRIFFITHS 
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F’IQURE 4. Side-view photographs of the lens at two successive times (2.1 and 21.1 rotation periods 
for (a) and ( b )  respectively). Experimental conditions are: 8 B 0.14, f~ 0.9 s-l, 8‘ B 6 cm 0, 
So B 0.5. 

When the eddy comes into the vicinity of the wall, the drift speed of the eddy 
decreases and a complicated interaction ensues. In some cases the eddy was observed 
to stay trapped in the vicinity of the wall or move downhill alongside the wall. In 
other cases the eddy became unstable. 

The effect of the centrifugal force has to be reduced as much as possible. The 
necessary condition for the centrifugal force to be small compared with the Coriolis 
force is (Ap/p)  (fD/4CZ) 4 1 (where D is the distance from the centre of the eddy to 
the axis of rotation). The latter ratio varies from 0.1 at the beginning of each 
experiment to 0.5 when the eddy is close to the wall. While these are not very small 
values, we believe that centrifugal forces are not sufficiently strong to play a major 
role in the experiment. 

3.4. The displacement of eddies 
The position of the centre of each eddy as a function of time is plotted in figure 5 
for five experiments. The parameters for the experiments are listed in table 1. The 
initial relative depths 13, of the dense fluid contained in the cylinder range from 0.35 
to 0.55, and the initial Froude numbers (Po = g’HS,/f*R;) lie between 2.4 and 5.2. 
All of these eddies are stable. In  most experiments the flow field in the upper layer 
was observed from the displacement of paper pellets on the free surface and the centre 
of the vortex in the upper layer was readily determined. In  one of these experiments, 
the upper-layer vortex contained fluoresceine dye and the vortex centre was 
determined as the centre of the circular patch of dye. The time interval between 
successive measurements of the position of the vortex is one minute, and corresponds 
to between four and six rotation periods of the tank. Some intermediate positions 
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FIQURE 5. Displacements of the centre of baroclinic eddies with time in five experiments. 
Experiment parameters are listed in table 1. The initial position of the lens is marked by @ (but 
the initial motion is not shown on this diagram). The time interval between two successive points 
is generally 1 min (4-6 rotation periods of the tank). When intermediate positions (30 s apart) are 
given, the symbol is open. The upslope direction is ‘northward’. The scale is given by the painted 
grid on the bottom plate. 

(30 s after the previous point) are also plotted, in which case the symbol is open. The 
initial position of the cylinder is the same for all five experiments. The distortion of 
the 10 cm scale grid painted on the bottom slope is due to the camera position. 

All eddies display a slow continuous westward translation. A northward dis- 
placement is also clear, and is one-third to one-half of the westward displacement. 
Large-amplitude uphill-downhill oscillations were observed in one experiment, 
although no special perturbation was noticed during the releasing of the fluid. The 
lack of temporal resolution precludes estimation of their frequency. The behaviour 
very shortly after release is not seen in figure 5 since the first measurements are taken 
three to six rotation periods after removal of the cylinder. More careful observations 
of the release show that a rapid upslope motion follows the initial downhill spreading 
of the lens during the first couple of rotation periods. Three of the five experiments 
were observed over a sufficiently long time to see the interaction of the eddy with 
the wall. In these three cases the structure moved downhill beside the wall. During 
the intervening time of 30-50 rotation periods, the evolution appeared to be little 
influenced by either the boundaries or the initial unsteady processes. Westward and 
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Experimental conditions Translation vortex structure 

f d H ci cz c, ro - 7f 
symbol (8-l) (cm 0) (cm) So Fo (mms-l) (mm 9-l) (mms-') w/f  (cm) 4x 

A 1.1 6.5 25 0.35 2.4 -8.3 -0.95 

1.0 4.5 26 0.55 3.1 -6.3 -0.60 

1.0 6.5 26 0.5 4.1 -9.1 -0.95 

* 0.9 6 26 0.5 4.6 -9.4 -0.80 

+ 0.9 5.6 25 0.5 4.6 - 
0.9 6 26 0.55 5.2 -9.4 -0.75 

f0.20 

k0.30 

f0.30 

k0.05 

f0.30 
- 

0.55 0.74 3.2 40 
f0.45 

f0.30 

f 1.0 

k0.35 

- 0.45 - 

0.55 - 

0.35 - 

- 0.71 3.4 40 
0.35 1.01 3.3 19 

- 

- - 

- - 

f0.30 

TABLE 1. Parameters for the experiments plotted in figure 5, along with the meamred translation 
speeds C, and C,, the theoretical westward translation speed C,, the maximum relative vorticity 
w/f in the upper-layer vortex (see figure 8), vortex core r, of the vortex above the lens and the 
e-folding decay time 7 for the upper-layer vorticity (non-dimensionalized with the rotation period 
of the tank). Properties of the upper-layer vortex were measured for three experiments ody.  

northward translation speeds -C, and C,, respectively, during that interval were 
estimated and the results are shown in table 1. Also shown in table 1 are the westward 
propagation speeds C, (2.7) predicted for isolated eddies. Measured values of the 
westward translation speed lie between 0.5 and 1 mm s-l. These values are an order 
of magnitude smaller than C,. 

3.5. The vortex f i w  structure above the lens 
The vortex located on top of the lens warrants special attention. The motion of the 
pellets on the free surface is observed to be axisymmetric to within a very good 
approximation, and the velocities far from the eddy centre are very small. The 
axisymmetry enables the centre of the vortex and the azimuthal component of 
velocity as a function of radius to be readily determined after digitizing the particle 
positions and displacements. 

Radial profiles of the azimuthal velocity at four successive times during two 
experiments are presented in figures 6 and 7. Comparison of the profiles for successive 
exposure times shows a decrease of the strength of the vortex with time. No significant 
increase in the size of the vortex is apparent. 

In  order to estimate the vorticity w at the centre of the vortex and the radius r 
of the vortex core, a classical Rankine vortex model, 

1 q ( r )  = !pr for r < r,, 

Q ( r )  = !p- rS for r > r,, 
r 

(3.3) 

was fitted to the experimental data, and is shown in figures 6 and 7. It provides a 
reasonable description of the data but we notice that measured velocities decay faster 
than the Rankine profile at large radii. This indicates anticyclonic vorticity 
surrounding the vortex core. The lengthscale ro of the vortex core, determined by 
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10 20 30 40 
m/4r 

FIGURE 8. Evolution of the vorticity u at the centre of the vortex in the upper layer for three 
experiments. Parameters for the experiments are listed in table 1. Vorticity u is non-dimensionalized 
by the background vortioity f and time is non-dimensionalized by the rotation period of the tank 
4xlf. Straight lines fit the data for each experiment. 

fitting (3.3) to the velocity data, is given in table 1. This lengthscale does not vary 
significantly from one experiment to another. 

The evolution of the vorticity w a t  the centre of the vortex is shown in figure 8, 
where the ratio of w to the Coriolis frequency f is plotted as a function of dimensionless 
time tf/4n. Data are plotted for three experiments the parameters of which are shown 
in table 1. From the straight-line fits included in figure 8, a characteristic e-folding 
time 7 for decay of the vorticity inside the eddy is deduced. This decay time is given 
in table 1, non-dimensionalized by the rotation period 4 ~ / f  of the tank. For all cases 
considered, decay time was found to be very long, indicating that the effects of decay 
on the vortex dynamics are small. Note that these times are notably larger than the 
Ekman decay time 

based on the maximum thickness H. The longer experimental decay time may be 
attributed to the fact that the kinetic energy in the upper layer is shielded from the 
rigid boundary by the lens. Another possible reason is related to the available 
potential energy (Stern 1975b, p. 86). Of great significance is the observation that the 
vortices are intense, and in all experiments the ratio of the relative vorticity w to 
the background vorticity f is of order one. The concentration of such a strong vorticity 
requires a complex adjustment process including significant three-dimensional 
motions. An inviscid stretching of fluid columns above the lens cannot account alone 
for the vorticity concentration achieved in the experiments. The conservation of 
potential vorticity requires the depth of fluid columns to increase by a factor of two 
in order to produce a relative vorticity of order f ,  so that the lens should be completely 
flattened or it should move far downhill. Neither of these scenarios corresponds to 
the experimental results. 
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4. The north-westward motion of the eddies 
4.1. The balance of forces acting on the lens 

An understanding of the experiment requires an examination of the balance of forces 
acting on the lens (see (2.5) and (2.6)), in order to explain how the buoyancy force 
is balanced. This requires an estimate of the relative importance of global forces, 
including the Coriolis force due to the displacement of the lens, the pressure force 
applied by the vortex above the lens and the buoyancy downhill force. With the 
geostrophic scaling, 

I (4.1) 

(z,y) - L, (u,,v,) - v, @,,v,) - v, 
h, - SH, h, - (1 -8) H ,  

we have four non-dimensional numbers, namely the Rossby number B = V/fL, the 
Froude number F = g’H/f ,La (with g‘ = Apg/p), the slope parameter /3 = sL/H and 
the relative depth of the dome S. Assuming that the effect of the slope is small we 
have p Q 1, but the relative depth of the dome S as well as the Rossby number 6 are 
O(1). The flow can be examined by an expansion of the flow field in the small 
parameter /3, in the manner previously used by Killworth (1983) and Flier1 (1984), 
namely 

u1 = U!+/3Ut+ ..., 21, = v;+pv;+ ...,I 
u, = pu:+. . . , v, = /3v:+. . . , 

p ,  = p;+pp:+ ... ) p ,  = pp:+ ..., 
h, = h:+/3h:+ ... . 

The expansion is similar to those that were carried out by the authors just cited, but 
it is worth noting that the expansion is applied to a different physical problem. In 
Killworth’s and Flied’s models ageostrophic large-amplitude motions were confined 
within lenses of finite volume (allowing maximum velocity at the edge of the lenses), 
whereas in our problem motions are small in the lens and ageostrophic motions take 
place in the surrounding fluid. Though velocity measurements inside the lens were 
unobtainable, we assume on theoretical grounds that velocities inside the dome are 
small since the Ekman friction decreases the magnitude of motion in the lens within 
a few rotation periods. This effect is substantiated in $4.2 and we shall see there that 
the slow uphill translation implies a relative vorticity of order 0.1 in the lens. The 
buoyancy force is of order /3, and we need an accurate description of the flow above 
the lens to this order. Since the measured translation speeds C, are much smaller than 
C,, (2.7), the effect of the Coriolis force is at most of order b, and can be neglected. 
Equation (2.6) then reduces to 

and 

-eJJ9 (hl alp! + hi a,p:) dz dy- F JJ9 hi dz dy = 0, (4.4) 

at zero and /3-order, respectively. 
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We verify (4.3) by observing that, since p ,  is of order /3, (4.2), the hydrostatic 
relation (2.2) is at zero order 

The integral on the left-hand side of (4.3) then becomes 

which is zero by Stokes theorem. In order to compare this with experiments, we 
specify the flow in the upper layer to be axisymmetric at zero order (i.e. h;(r), q ( r ) ,  
where q ( r )  is the azimuthal velocity component as defined in $3). The momentum 
equation in the upper layer is then written at zero order as 

and h;(r) is assumed to vanish on the circle r = 1 (h;(l) = 0). 

/3-order. However, we observe that the particular solution, 
The specification of pi and hi is required to verify (4.4), the balance of forces at 

(4.7) 

verifies (4.4). An integration by parts with respect to y of the first term of (4.4) shows 
that this term is of opposite sign to the second term. The domain of integration is 
here the disk of radius r = 1. This differs from the area 9 covered by the lens in the 
plane (x, y) as defined in $2. Indeed, the shape of the lens is 

(4.8) 
h&Y) = h;(r)-$/. B 

Since the eddy is not isolated (V$(l)  =l= 0), (4.6) implies a,.(h;)(l) 9 0, and the edge 
of the lens is given by ( T ,  8)-solution of 

(4.9) 
(r-l)tlrh(l)--sin8 B = 0. 

s 
The displacement of the edge of the lens from the circle r = 1 is of order 8. The depth 
of the lens is of order /3 in the region of displacement of the edge, and therefore the 
difference between 9 and the disk of radius r = 1 contributes only to order /P in the 
integrated momentum. This justifies considering the disk of radius T = 1 as the area 
covered by the lens when solving (4.3) and (4.4). 

An interesting property of the simple solution (4.7) is that the zero-order axisym- 
metric upper-layer flow follows the lines of constant depth above the lens because 

= 1-6h:-B8hi-/?y = l-&h;(r). (4.10) 

Such a flow is certainly not far from being realized in the experiment as our 
observations show very axisymmetric streamlines. Equation (4.4) indicates that this 
flow applies a net pressure force on the lens, owing to the modification of the shape 
of the lens hi, which balances the buoyancy. The zero-order axisymmetric velocity 
was measured in the experiments, and (4.6) allows the determination of the amount 
of vorticity in the upper layer that is necessary to maintain a given amount of dense 
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water. Integration of (4.6) relates the volume of the lens to the velocity distribution 
Q. In dimensional form we have 

--x joL r2 (f Q+?) dr = g’x loL r2 a,. hi dr = - 2x9’ (4.11) 

where L denotes the distance of the edge from the centre of the dome. The right-hand 
side of (4.11) is the total volume of the lens. The distance L has been computed from 
(4.11) with the velocity profile (3.3), the total volume being determined from the 
initial conditions. The result predicts a radius of the correct order of magnitude, 
though the lenses have flatter shapes than is observed in the experiments. For the 
two experiments plotted in figures 6 and 7 (Fo = 2.4 and 5.2,  respectively) the 
corresponding values of L are 22 and 27 cm, respectively. The maximum depths at 
the centre of the lens are then 1.9 and 2.3 cm for the two cases. The shapes would 
be somewhat steeper when taking into account the anticyclonic motions in the lens. 
We nevertheless believe that the solution given here corresponds to an asymptotic 
case towards which the eddies observed in the experiment evolve. 

Finally, i t  is worth noting that the flow described in this section does not verify 
the integral theorem (2 .8) .  At the edge of the eddy ( r  = l),  the existence of motions 
(Q(1) + 0) implies non-zero pressures at r = 1, and (4.5) implies 

ep! + FShi = A ,  (4.12) 

where A is a negative constant. Outside the eddy the pressure p ,  increases towards 
0 so that the integral (2 .8)  is negative if it converges. 

4.2. The effect of Ekman friction and the displacement of the lens 
Figure 5 shows that for all experiments the lens and the eddy follow a north-westward 
path and the lens is eventually carried to positions that are higher on the slope than 
the initial position. Because the centrifugal force is negligible, the increase of absolute 
kinetic energy associated with the strong cyclonic motions in the upper layer implies 
that a significant amount of potential energy is released. Since part of the initial dense 
water moves uphill with the lens, another part of the dense fluid must flow downhill 
outside the lens. We observe this in figures 3 and 4 as a flow in a thin bottom layer 
moving south-westward. This flow is a result of Ekman pumping within the lens. A 
sketch of the lens and the eddy is drawn in figure 9 and the Ekman circulation is 
depicted. A typical non-dimensional time scale 7E2 for the Ekman decay of the lens is 

7 -L( f S H f  >” 
E247c 47c 2v * 

(4.13) 

The approximate experimental value of this number is 3. This is an order of 
magnitude smaller than the timescale of decay of the vortex on top of the lens (see 
table 1). The vertical velocities produced by Ekman pumping would tend to decrease 
the height of the lens at the rate 

(4.14) 

where 6 is the vorticity of the flow inside the lens. We estimate 5 - -3 because the 
heavy fluid collapses by a factor of two after release, and therefore the order of 
magnitude of the velocity a, h,, (4.14), is 0.3 mm s-l. Acting alone this effect would 
produce a significant stretching of the eddy above the lens. The vorticity in the upper 
layer would increase in time. Since the depth above the lens is smaller on its uphill 
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I 
I 

I 

1 ~ Edge of the vortex 
I 

Plan view 
1 West 

RQURE 9. A sketch of the lens and the Taylor column both in plane and side views. Large arrows 
indicate the Ekman pumping motion in the lens. The depth of the lens decreases with time as 
indicated by the small arrows on the interface. 

side the stretching is more efficient on that side, producing smaller pressures north 
of the lens. The lens is therefore pushed uphill in order to offset the stretching, to 
offset the increase in w ,  and to restore the approximate balance between the pressure 
force and gravity. The uphill velocity necessary to offset (4.14) is 

c, - --(+ 1 v 1  -(-yg, 1 v 1  
s 2f s 2f 

(4.15) 

the experimental value of which is 2.5 mm s-l. Such a velocity does occur at the 
beginning of the experiment even though smaller values occur at later times (table 1). 
The reason is that the vorticity 6 within the lens decreases in time producing a 
decrease of the northward translation of the lens. In fact a rapid decrease of the 
northward speed is observed in the experiment (see figure 5 ) .  Note that the typical 
value C ,  - 0.5 mm s-l corresponds to a characteristic relative vorticity Elf - 0.1 in 
the lens (equation (4.15)). 

Part of the northward movement of the lens might also be attributed to weak 
radiation of Rossby waves (McWilliams & Flier1 1979) or other inertial wake effects 
that cause the energy of the cyclonic vortex to decrease. As the cyclonic vorticity 
decreases the conservation of potential vorticity requires the column thickness to 
decrease via a northward motion. We were not able to provide a quantitative estimate 
of the importance of this second mechanism, but our analysis of the experiment 
indicates that it is at most as important as the effect of Ekman friction. 
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5. Summary 
In  this paper we have addressed the question of the existence and the realizability 

of a baroclinic isolated eddy on a sloping bottom in a rotating fluid. When the depths 
of the lens and of the surrounding layer have the same order of magnitude, a general 
integral requirement leads to the surprising conclusion that an isolated dense lens 
on a sloping bottom can exist only if there are strong cyclonic motions above it. 

Coherent and long-lived eddies have been produced on a sloping bottom. They have 
very strong cyclonic motion above the lens of dense water. In order to avoid baroclinic 
instability and vortex splitting the lateral scale of these eddies had to be kept small, 
of the order of the internal radius of deformation. The dome as well as the Taylor 
column above it display a slow westward and uphill drift. An analysis of the 
implications of the isolation requirements ($2), which is compared with the experi- 
ments, leads us to conclude that our coherent eddies are not isolated. In  particular 
they do not satisfy the integral requirement (2.8). Moreover, an isolated eddy 
propagates with the speed of isolated eddies in an infinitely deep and motionless ocean 
(Nof 1983) even in the presence of strong motion above the lens. This implies that 
the vortex on top of the lens applies no net pressure on the lens. The translation speed 
of an isolated eddy is much larger than the translation speeds of the eddies produced 
in the laboratory. We conclude that for the laboratory vortices the buoyancy force 
is balanced by the pressure force applied by the vortex. A simple model is given, in 
which the streamlines in the upper layer follow the lines of constant depth, and we 
show that the strength of the vortices in the experiment is sufficient to account for 
the balance of buoyancy, Finally, the effect of Ekman friction is examined and we 
demonstrate that this phenomenon can account for the northward displacement of 
the eddy. 

The work was initiated during the 1983 Geophysical Fluid Dynamics Program, 
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R. Frazel of the Woods Hole Oceanographic Institution made possible preliminary 
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Grenoble with the assistance of S. Layat. M.M. thanks J. Verron and B. Barnier for 
helpful comments and E. J. Hopfinger for his continuous support. The work of M.M. 
was supported in 1984-5 by the CNEXO under contract number 84/3276. The work 
of M. E. S. was partially supported by 0. N. R. and a visiting professorship from the 
Institut de MBcanique de Grenoble. 
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